MBI Videos

Miranda Holmes-Cerfon

  • video photo
    Miranda Holmes-Cerfon
    Particles in soft-matter systems (such as colloids) tend to have very short-range interactions, so traditional theories, that assume the energy landscape is smooth enough, will struggle to capture their dynamics. We propose a new framework to look at such particles, based on taking the limit as the range of the interaction goes to zero. In this limit, the energy landscape is a set of geometrical manifolds plus a single control parameter, while the dynamics on top of the manifolds are given by a hierarchy of Fokker-Planck equations coupled by "sticky" boundary conditions. We show how to compute dynamical quantities such as transition rates between clusters of hard spheres, and then show this agrees quantitatively with experiments on colloids. We hope this framework is useful for modelling other systems with geometrical constraints, such as those that arise in biology.

View Videos By